Saturday, December 31, 2011

Natural language processing I - Natural language processing and how it evolved over time.

Natural language processing (NLP) is a field of computer science and linguistics concerned with the interactions between computers and human (natural) languages. In theory, natural-language processing is a very attractive method of human-computer interaction. Natural language understanding is sometimes referred to as an AI-complete problem, because natural-language recognition seems to require extensive knowledge about the outside world and the ability to manipulate it.

NLP has significant overlap with the field of computational linguistics, and is often considered a sub-field of artificial intelligence.

Modern NLP algorithms are grounded in machine learning, especially statistical machine learning. Research into modern statistical NLP algorithms requires an understanding of a number of disparate fields, including linguistics, computer science, and statistics. For a discussion of the types of algorithms currently used in NLP, see the article on pattern recognition.

The history of NLP generally starts in the 1950s, although work can be found from earlier periods. In 1950, Alan Turing published his famous article "Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence. This criterion depends on the ability of a computer program to impersonate a human in a real-time written conversation with a human judge, sufficiently well that the judge is unable to distinguish reliably — on the basis of the conversational content alone — between the program and a real human. The Georgetown experiment in 1954 involved fully automatic translation of more than sixty Russian sentences into English. The authors claimed that within three or five years, machine translation would be a solved problem. However, real progress was much slower, and after the ALPAC report in 1966, which found that ten years long research had failed to fulfill the expectations, funding for machine translation was dramatically reduced. Little further research in machine translation was conducted until the late 1980s, when the first statistical machine translation systems were developed.

Some notably successful NLP systems developed in the 1960s were SHRDLU, a natural language system working in restricted "blocks worlds" with restricted vocabularies, and ELIZA, a simulation of a Rogerian psychotherapist, written by Joseph Weizenbaum between 1964 to 1966. Using almost no information about human thought or emotion, ELIZA sometimes provided a startlingly human-like interaction. When the "patient" exceeded the very small knowledge base, ELIZA might provide a generic response, for example, responding to "My head hurts" with "Why do you say your head hurts?"

During the 70's many programmers began to write 'conceptual ontologies', which structured real-world information into computer-understandable data. Examples are MARGIE (Schank, 1975), SAM (Cullingford, 1978), PAM (Wilensky, 1978), TaleSpin (Meehan, 1976), QUALM (Lehnert, 1977), Politics (Carbonell, 1979), and Plot Units (Lehnert 1981). During this time, many chatterbots were written including PARRY, Racter, and Jabberwacky.

Up to the 1980s, most NLP systems were based on complex sets of hand-written rules. Starting in the late 1980s, however, there was a revolution in NLP with the introduction of machine learning algorithms for language processing. This was due both to the steady increase in computational power resulting from Moore's Law and the gradual lessening of the dominance of Chomskyan theories of linguistics (e.g. transformational grammar), whose theoretical underpinnings discouraged the sort of corpus linguistics that underlies the machine-learning approach to language processing. Some of the earliest-used machine learning algorithms, such as decision trees, produced systems of hard if-then rules similar to existing hand-written rules. Increasingly, however, research has focused on statistical models, which make soft, probabilistic decisions based on attaching real-valued weights to the features making up the input data. Such models are generally more robust when given unfamiliar input, especially input that contains errors (as is very common for real-world data), and produce more reliable results when integrated into a larger system comprising multiple subtasks.

Many of the notable early successes occurred in the field of machine translation, due especially to work at IBM Research, where successively more complicated statistical models were developed. These systems were able to take advantage of existing multilingual textual corpora that had been produced by the Parliament of Canada and the European Union as a result of laws calling for the translation of all governmental proceedings into all official languages of the corresponding systems of government. However, most other systems depended on corpora specifically developed for the tasks implemented by these systems, which was (and often continues to be) a major limitation in the success of these systems. As a result, a great deal of research has gone into methods of more effectively learning from limited amounts of data.
Recent research has increasingly focused on unsupervised and semi-supervised learning algorithms. Such algorithms are able to learn from data that has not been hand-annotated with the desired answers, or using a combination of annotated and non-annotated data. Generally, this task is much more difficult than supervised learning, and typically produces less accurate results for a given amount of input data. However, there is an enormous amount of non-annotated data available (including, among other things, the entire content of the World Wide Web), which can often make up for the inferior results.

NLP through machine learning
As described above, modern approaches to natural language processing (NLP) are grounded in machine learning. The paradigm of machine learning is different from that of most prior attempts at language processing. Prior implementations of language-processing tasks typically involved the direct hand coding of large sets of rules. The machine-learning paradigm calls instead for using general learning algorithms — often, although not always, grounded in statistical inference — to automatically learn such rules through the analysis of large corpora of typical real-world examples. A corpus (plural, "corpora") is a set of documents (or sometimes, individual sentences) that have been hand-annotated with the correct values to be learned.

As an example, consider the task of part of speech tagging, i.e. determining the correct part of speech of each word in a given sentence, typically one that has never been seen before. A typical machine-learning-based implementation of a part of speech tagger proceeds in two steps, a training step and an evaluation step. The first step — the training step — makes use of a corpus of training data, which consists of a large number of sentences, each of which has the correct part of speech attached to each word. (An example of such a corpus in common use is the Penn Treebank. This includes (among other things) a set of 500 texts from the Brown Corpus, containing examples of various genres of text, and 2500 articles from the Wall Street Journal.) This corpus is analyzed and a learning model is generated from it, consisting of automatically-created rules for determining the part of speech for a word in a sentence, typically based on the nature of the word in question, the nature of surrounding words, and the most likely part of speech for those surrounding words. The model that is generated is typically the best model that can be found that simultaneously meets two conflicting objectives: To perform as well as possible on the training data, and to be as simple as possible (so that the model avoids overfitting the training data, i.e. so that it generalizes as well as possible to new data rather than only succeeding on sentences that have already been seen). In the second step (the evaluation step), the model that has been learned is used to process new sentences. An important part of the development of any learning algorithm is testing the model that has been learned on new, previously unseen data. It is critical that the data used for testing is not the same as the data used for training; otherwise, the testing accuracy will be unrealistically high.

Many different classes of machine learning algorithms have been applied to NLP tasks. In common to all of these algorithms is that they take as input a large set of "features" that are generated from the input data. As an example, for a part-of-speech tagger, typical features might be the identity of the word being processed, the identity of the words immediately to the left and right, the part-of-speech tag of the word to the left, and whether the word being considered or its immediate neighbors are content words or function words. The algorithms differ, however, in the nature of the rules generated. Some of the earliest-used algorithms, such as decision trees, produced systems of hard if-then rules similar to the systems of hand-written rules that were then common. Increasingly, however, research has focused on statistical models, which make soft, probabilistic decisions based on attaching real-valued weights to each input feature. Such models have the advantage that they can express the relative certainty of many different possible answers rather than only one, producing more reliable results when such a model is included as a component of a larger system. In addition, models that make soft decisions are generally more robust when given unfamiliar input, especially input that contains errors (as is very common for real-world data).

Systems based on machine-learning algorithms have many advantages over hand-produced rules:
• The learning procedures used during machine learning automatically focus on the most common cases, whereas when writing rules by hand it is often not obvious at all where the effort should be directed.
• Automatic learning procedures can make use of statistical inference algorithms to produce models that are robust to unfamiliar input (e.g. containing words or structures that have not been seen before) and to erroneous input (e.g. with misspelled words or words accidentally omitted). Generally, handling such input gracefully with hand-written rules — or more generally, creating systems of hand-written rules that make soft decisions — is extremely difficult and error-prone.
• Systems based on automatically learning the rules can be made more accurate simply by supplying more input data. However, systems based on hand-written rules can only be made more accurate by increasing the complexity of the rules, which is a much more difficult task. In particular, there is a limit to the complexity of systems based on hand-crafted rules, beyond which the systems become more and more unmanageable. However, creating more data to input to machine-learning systems simply requires a corresponding increase in the number of man-hours worked, generally without significant increases in the complexity of the annotation process.



Based on http://en.wikipedia.org/wiki/Natural_language_processing licensed under the Creative Commons Attribution-Share-Alike License 3.0

No comments:

Post a Comment